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Abstract
The digital and information technology revolutions are based on algorith-

mic mathematics in many of their alternative forms. Algorithmic mathemat-
ics per se is not necessarily underpinned by the digital or the discrete only;
analogue traditions of algorithmic mathematics have a noble pedigree, even in
economics. Constructive mathematics of any variety, computability theory and
non-standard analysis are intrinsically algorithmic at their foundations. Eco-
nomic theory, game theory and mathematical �nance theory, at many of their
frontiers, appear to have embraced the digital and information technology revo-
lutions via strong adherences to experimental, behavioural and so-called compu-
tational aspects of their domains �without, however, adapting the mathemati-
cal formalisms of their theoretical structures. Recent advances in mathematical
economics, game theory, probability theory and statistics suggest that an al-
gorithmic revolution in the social sciences is in the making. In this paper I
try to trace the origins of the emergence of this �revolution�and suggest, via
examples in mathematical economics, game theory and the foundations of sta-
tistics, where the common elements are and how they may de�ne new frontiers
of research and visions. Essentially, the conclusion is that the algorithmic social
sciences are uni�ed by an underpinning in Diophantine Decision Problems as
their paradigmatic framework.
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1 A Preamble on Origins and Traditions

In mathematics everything is algorithm and nothing is meaning;
even when it doesn�t look like that because we seem to be using
words to talk about mathematical things. Even these words are
used to construct an algorithm.
Wittgenstein (1974)1 , p. 468; italics in original.

From my earliest writings and thoughts on algorithmic issues in economics,
the part of Wittgenstein�s philosophy of mathematics, summarised in the above
quote, has been in�uential in my attempt at understanding the meaning, and
aim, of mathematical economics. It gives me a very particular pleasure, there-
fore, to speak at this conference in Finland, from where Wittgenstein�s chosen
successor for the Knightbridge Professorship of Philosophy, Georg Henrik von
Wright, came �and to which he retired from Cambridge, to continue a remark-
able philosophical journey to participate in a great Finnish tradition of scholar-
ship in the noble Art of Induction, and its scienti�c origins and development. In
his �rst monograph after succeeding Wittgenstein, A Treatise on Induction
and Probability: The Application of Modern Symbolic Logic to the
Analysis of Inductive Reasoning2 , von Wright paid handsome tribute to
the pioneers who inspired him in his own work on Induction and Probability
(ibid, p.12)3 :

"The author from whom I have learnt most is undoubtedly Keynes.
It seems to me that next to Francis bacon, his has been the most
fertile mind seriously to occupy itself with the questions which are
the main topic of this inquiry. I have also drawn much inspiration
from the works of von Mises and Reichenbach on probability."

In his admirable new book4 , with impeccable pedagogical style and content,
Peter Grünwald, in turn, noted perceptively:

"If we ignore [the problems of uncomputability and large con-
stants], we may use Kolmogorov complexity as our fundamental
concept and build a theory of idealized inductive inference on top
of it. This road has been taken by Solomono¤ ... starting with the

1Philosophical Grammar by Ludwig Wittgenstein, Basil Blackwell, Oxford, 1974. I
recall that I used this quote by Wittgenstein, in one of my early works on the complexity
of the policy design process, almost a quarter of a century ago (cf. Constructing Objective
Functions for Macroeconomic Decision Models: A Formalization of Ragnar Frisch�s Approach
by Berc Rustem & Kumaraswamy Velupillai, paper presented at the 5th World Congress
of the Econometric Society, Boston, 1985.

2A Treatise on Induction and Probability: The Application of Modern Sym-
bolic Logic to the Analysis of Inductive Reasoning by Georg Henrik von Wright,
Routledge & Kegan Paul, Ltd., London, 1951.

3The Preface to the book from which I quote was dated December, 1948, more than two
years after the sad and premature death of Keynes, in April, 1946

4The Minimum Description Length Principle by Peter D. Grünwald, with a Fore-
ward by jorma Rissanen, The MIT Press, Cambridge, Massachusetts, 2007.
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1964 paper in which he introduced Kolmogorov complexity, and by
Kolmogorov, when he introduced the Kolmogorov minimum su¢ -
cient statistic.... . Both Solomono¤�s and Kolmogorov�s ideas have
been substantially re�ned by several authors. ..... Di¤erent authors
have used di¤erent names for this area of research: �ideal MDL,�
�idealized MDL,�or �algorithmic statistics.� It is closely related
to the celebrated theory of random sequences due to P. Martin-Löf
and Kolmogorov ... ."
ibid, p.11. (Italics in original; words in bold, added)

In an �Introduction Some Years Later�, in fact almost forty years later, to his
remarkable UCLA doctoral dissertation of 19515 , written under Hans Reichen-
bach, Hilary Putnam noted, with characteristic prescience (p.2; italics added):

"Reichenbach, following the lead of C.S. Peirce and von Mises,
identi�ed probability with the relative frequency of an attribute in a
�nite population (which Reichenbach thinks of as a �nite sequence),
or the limit of the relative frequency of the attribute in an in�nite
sequence. This put him in con�ict with his good friend Rudolf Car-
nap who at that time followed Keynes in thinking of probability as
a primitive logical notion. For Reichenbach this talk of a primitive
logical notion was little better than sheer mysticism."

Keynes, in turn, was misled into thinking of probability as a primitive logical
notion under the unfortunate in�uence of Russel and Whitehead�s Principia
Mathematica, where the disastrous attempt to reduce mathematics to logic led,
eventually, to the grundlagenkrise of the 1920s between Brouwer and Hilbert,
from which we had the felicitous emergence of the foundations of algorithmic
mathematics: varieties of constructive mathematics and recursion theory. It is
in this context that one must recall Brouwer�s famous �rst act of intuitionism6 ,
with its uncompromising requirement for constructive mathematics �which is
intrinsically algorithmic �to be independent of �theoretical logic�::

"FIRST ACT OF INTUITIONISM Completely separating math-
ematics from mathematical language and hence from the phenomena
of language described by theoretical logic, recognizing that intuition-
istic mathematics is an essentially languageless activity of the mind
having its origin in the perception of a move of time."
ibid, p.4; italics added.

The path from Bacon, via Hume and Kant, to Wittgenstein and Brouwer,
to von Mises and Church, to Kolmogorv and Solomono¤, and, �nally, to the

5The Meaning of the Concept of Probability in Application to Finite Sequences
by Hilary Putnam, Ph.D Thesis, UCLA, 1951, A Garland Series, Garland Publishing, New
York & London, 1990.

6Brouwer�s Cambridge Lectures on Intuitionism, edited by D. van Dalen, Cambridge
University Press, Cambridge, 1981
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stage set by constructive mathematics and recursion theory enabled Algorithmic
Statistics to emerge in the pioneering work of Jorma Rissanen. To the best of
my knowledge Algorithmic Statistics was so termed �rst by Gács, Tromp and
Vitányi7 (p. 2443; italics added):

"While Kolmogorov complexity is the expected absolute measure
of information content of an individual �nite object, a similarly ab-
solute notion is needed for the relation between an individual data
sample and an individual model summarizing the information in the
data, for example, a �nite set (or probability distribution) where
the data sample typically came from. The statistical theory based on
such relations between individual objects can be called algorithmic
statistics, in contrast to classical statistical theory that deals with
relations between probabilistic ensembles."

The potted outline of a possible path given above, for algorithmic statistics,
via the struggles and the visions of the pioneers, is an attempt, eventually, to
tell a coherent story of the emergence of the algorithmic social sciences from the
foundational debates in mathematics, philosophy and epistemology. The thrust
of such a reconstruction of the emergence of the algorithmic social sciences lies in
pointing out that only a radically new vision of mathematical economics, game
theory and statistics can lead us towards making these subjects truly applied
sciences and free of mysticism and subjectivism.
I have been lecturing on Algorithmic Economics since at least the academic

year 1991-1992, �rst at UCLA8 and, then, at various Universities in Europe. The
gradual awareness that even simple supply-demand models, based on rational
agents maximizing utility in interdependent environments, required a reformu-
lation of the foundations of mathematical economics in terms of Diophantine
decision problems, consolidated my prior visions for algorithmic economics.
I began to think of Game Theory in algorithmic modes � i.e., Algorithmic

Game Theory �after realizing the futility of algorithmising the uncompromis-
ingly subjective von Neumann-Nash approach to game theory and beginning to
understand the importance of Harrop�s theorem9 in showing the indeterminacy
of even �nite games. This realization came after an understanding of e¤ective
playability in arithmetical games, developed elegantly by Michael Rabin more
than �fty years ago10 . This latter work, in turn, stands on the tradition of al-

7Algorithmic Statistics by Péter Gács, John T. Tromp and Paul Vitányi, IEEE Trans-
actions on Information Theory, Vol. 47, No. 6, September, 2001, pp. 2443-2463.

8My �rst encounter with MDL was also at about this time. I have recorded this aspect of
my adventures in the algorithmic social sciences in my contribution to: Festschrift in Honor
of Jorma Rissanen on the Occasion of his 75th Birthday, edited by Peter Grünwald,
petri Myllymäki, Ioan Tabus, Marcelo Weinberger & Bin Yu, Tampereen Yliopistopaino Oy,
2008.

9Harrop, Ronald (1961), "On the Recursivity of Finite Sets", Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, Bd, 7, pp. 136 �140.
10Rabin, Michael O, (1957), "E¤ective Computability of Winning Strategies", in: Annals

of Mathematics Studies, No. 39: Contributions to the Theory of Games, Vol. III,
edited by M. Dresher, A. W. Tucker and P. Wolfe, pp. 147�157, Princeton University Press,
princeton, NJ.
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ternative games pioneered by Zermelo, and misunderstood, misinterpreted and
misconstrued by generations of orthodox game theorists.
However, algorithmic game theory, at least so far as such a name for a �eld

is concerned, seems to have been �rst �de�ned�by Christos Papadimitriou11 , pp.
xiii-xiv (italics added):

"[T]he Internet was the �rst computational artefact that was not
created by a single entity (engineer, design team, or company), but
emerged from the strategic interaction of many. Computer scientists
were for the �rst time faced with an object that they had to feel the
same bewildered awe with which economists have always approached
the market. And, quite predictably, they turned to game theory for
inspiration �in the words of Scott Shenker, a pioneer of this way of
thinking ...... �the Internet is an equilibrium, we just have to identify
the game.� A fascinating fusion of ideas from both �elds � game
theory and algorithms �came into being and was used productively
in the e¤ort to illuminate the mysteries of the Internet. It has come
to be called algorithmic game theory."

Christos Papadimitriou is one of the great contemporary scholars of compu-
tational complexity theory. However, his scholarship on the origins of algorith-
mic game theory leaves much to be desired - especially since alternative games
were there at the beginning of the emergence of recursion theory, even in the
classic work of Gödel, later merging with the work that led to Matiyasevich�s
decisive resolution of Hilbert�s Tenth Problem. Hence, the origins of algorithmic
game theory, like those of algorithmic statistics, lie in the grundlagenkrise of
the 1920s.
The three cardinal principles of what I have come to call the algorithmic

social sciences are, thus: Diophantine decision problems12 in algorithmic eco-
nomics, e¤ective playability and (un)decidability in algorithmic and alternative
games13 and inductive inference from �nite sequences for algorithmic statistics.
However, I am only standing on the shoulders of Herbert Simon and his

visions. This means there is the further unifying vision of algorithmic problem
solving14 , by algorithmically rational agents situated in algorithmic institutions
� i.e., an algorithmic formalization of the environment in which decisions are
made, games are played and inductive inferences are made.
This vision is, therefore, not simply an adaptation of orthodox mathemat-

ical formalizations in the age of the digital computer. Indeed, the algorithmic
revolution I am talking about is not restricted to the digital revolution; the
analogue and the hybrid have their role in the emergence of the algorithmic

11Forward in: Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden,
Éva Tardos, and Vijay V. Vazirani, Cambridge University Press, New York.
12Naturally, by �decision problem� I mean that which is normally meant in mathematical

logic, particularly in proof theory and recursion theory.
13 In particular even in �nite games.
14Human Problem Solving by Allen Newell and Herbert Simon, Prentice-Hall, Inc.,

Englewood Cli¤s, New Jersey, 1972.
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social sciences. It is about a wholesale revamping of the three disciplines �a
�an algorithmic revolution in the social sciences�.
Economists, Game Theorists and Probabilists have abundant experiences

in announcing false dawns: The Marginal Revolution15 ,The Keynesian Revolu-
tion16 , A Revolution in Economic Theory 17(i.e., Game Theory), The Rational
Expectations Revolution18 , The Probabilistic Revolution19 and numerous other
similar enthusiasms have all come and gone, leaving their marks in one form or
another, in the subject. There are those who claim, among them some of the
more recent Nobel Laureates in Economics, that the so-called search for the mi-
crofoundations of macroeconomics brought with it an �information revolution in
economics�. These claims have never been based on any kind of understanding
of information theory �classical or modern �and its own combinatorial and al-
gorithmic revolution. Neither the work of Claude Shannon, nor the monumental
developments in Kolmogorov Complexity Theories, have had the slightest im-
pact on the work of economic theorists, whether macro, micro or microfounded
macro, or even game theory. Some of these revolutions have altered and re-
shaped their intended subject matter almost irreversibly; others have spawned
counter-revolutions. But none �except, perhaps, the �Probabilistic Revolution�
�have encapsulated what may be called the zeitgeist under which the tempo
of the science and technology of a whole age seems to be moving. It is in this
sense that I am referring to the �algorithmic revolution�in the social sciences,
joining in the great movements in the sciences �pure and applied �and in the
humanities. It is not about a narrow adaptation towards a particular kind of
mathematics. It is about being a part of the scienti�c spirit of the times. Either
we join the adventure as pioneers or we will be dragged along, screaming and
sticking to outmoded systems of thought and modes of practice.
Against the backdrop provided in this preamble, the next section outlines

some of the infelicities in mathematical economics and orthodox game theory.
The aim is to dissect and show that the claims of computability and algorithmic
feasibilities, routinely made in the core of economic theory and game theory are

15The Marginal Revolution in Economics: Interpretation and Evaluation edited
by R. Collison Black, Craufurd D. Goodwin, A. W. Coats, Duke University Press, Durham,
North Carolina, 1973.
16The Keynesian Revolution by Lawrence R. Klein, Macmillan & Co. Ltd., London,

1952.
17"A Revolution in Economic Theory? " by Carl Keysen, Review of Economic Studies

14(1), pp. 1�15, 1946-47. It was refreshing that Carl Keysen�s case was posed as a question -
unlike all of the others, most of whom claimed a revolution ex post, sometimes to be proved
false with a further passage of time. I hope I am making my case ex ante, with at least a small
case question mark appropriately placed. I hope this essay acts as a chronicle of a revolution
foretold �not as a �death foretold�(pace Gabriel García Márquez)!
18The Rational Expectations Revolution in Macroeconomics: Theories & Evi-

dence by David K.H. Begg, Philip Allan Publishers, Oxford, 1982. The Rational Expec-
tations Revolution: Readings from the Front Line edited by Preston J. Miller, The
MIT Press, Cambridge, Massachusetts, 1994.
19The Probabilistic Revolution - Volume 1: Ideas in History edited by Lorenz

Krüger, Lorraine Daston, Michael Heidelberger; Volume 2: Ideas in the Sciences, edited
by Lorenz Krüger, Gerd Gigerenzer and Mary S. Morgan, The MIT Press, Cambridge, Massa-
chusetts, 1987.
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untenable. Following this, in section 3 it is shown, by example, what has to
be done to be consistently and rigorously algorithmic in some central areas
of economic theory and game theory. The concluding section suggests that
beyond even the algorithmic frontiers lies a world where a symbiosis between
the indeterminacy of phenomenology and the epistemology of the algorithmic
social sciences could lead to a humbling of the social sciences. It is my personal
hope that this humbling may lead to the return of the social sciences to their
humanistic roots.

2 Algorithmic Infelicities in Economics, Game
Theory and Statistics �A Glimpse

Hilbert20 (p. 191): �No one shall drive us out of the paradise
which Cantor has created for us.�
Wittgenstein21 (p.103): �I would say, "I wouldn�t dream of trying

to drive anyone out of this paradise." I would try to do something
quite di¤erent: I would try to show you that it is not a paradise �
so that you�ll leave of your own accord. I would say, You�re welcome
to this; just look about you." �

I shall give a few representative examples of algorithmic infelicities in math-
ematical economics, game theory and statistics, just to make my point that
the practitioners of the orthodox visions are deluding themselves when they
think they can have one foot in Cantor�s Paradise and another in the world of
Algorithmic Mathematics.

2.1 Game Theory

In one of the standard advanced textbooks in orthodox game theory22 , almost
at the very beginning of the text we are informed that (p. 6; italics added):

"At the beginning of the twentieth century Zermelo23 suggested
that chess is a trivial game for �rational players�: he described an

20On the In�nite by David Hilbert [1925, 1926], in: Philosophy of Mathermatics - Selected
Readings, Second Edition, pp. 183-201, edited by paul benacerraf & Hilary Putnam, Cam-
bridge University Press, Cambridge, 1983.
21Wittgenstein�s Lectures on the Foundations of Mathematics - Cambridge,

1939, From the Notes of R.G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick
Smuthies, edited by Cora Diamond, The University of Chicago Press, Chicago.
22A Course in Game Theory by Martin J. Osborne & Ariel Rubinstein, The MIT Press,

Cambridge, Massachusetts, 1994.
23"Über ein Anwendung der Mengenlehre auf die Theorie des Schachspiels", by Ernst Zer-

melo Proceedings of the Fifth International Congress of Mathematicians, Cam-
bridge, 11-28 August, 1912, edited by E.W.Hobson & A.E.H Love, Vol. 2, pp. 501� 4,
Cambridge University Press, Cambridge,1913.
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algorithm that can be used to �solve�the game. The technique de�nes
a pair of strategies, one for each player, that leads to an �equilibrium�
outcome .... . ... However, despite this remarkable result ....... [its]
equilibrium outcome is yet to be calculated; currently it is impossible
to do so using Zermelo�s algorithm. Even if one day it is shown that
White has a winning strategy, it may not be possible for a human
being to implement that strategy."

There are several infelicities in this extraordinary set of claims:

1. Zermelo did not �describe an algorithm that can be used to �solve� the
game.�;

2. The �equilibrium outcome is yet to be calculated�precisely because Zer-
melo did not �describe an algorithm that can be used to �solve�it.�

3. Zermelo, in fact, did show that �White has a winning strategy�, but did
not do so algorithmically;

In the next section I demonstrate, formally, the exact content of these infelic-
ities. However, the authors of this much lauded and extensively used advanced
textbook add further incorrect algorithmic claims in their demonstration of the
existence of a subgame perfect equilibrium in �nite extensive games with perfect
information (ibid, pp. 99-100; italics in the original; emphasis added):

"The procedure used in [the] proof [of the existence of a subgame
perfect equilibrium in �nite extensive games with perfect informa-
tion] is often referred to as backwards induction. In addition to
being a means by which to prove the proposition, this procedure is
an algorithm for calculating the set of subgame perfect equilibria of
a �nite game. Part of the appeal of the notion of subgame perfect
equilibrium derives from the fact that the algorithm describes what
appears to be a natural way for players to analyze such a game so
long as the horizon is relatively short."

These �algorithmic�claims are also false.
In a relatively recent contribution to an analysis of the mathematical phi-

losophy underpinning proofs in the von Neumann-Morgenstern classic24 , Nicola
Giocoli25 makes equally invalid claims about the constructive nature of vari-
ous demonstrations in The Theory of Games and Economic Behaviour.
Osborne and Rubinstein�s infelicities are due to their incomprehension of the for-
mal meaning of an algorithm, whether from a recursion theoretic �i.e., subject
to the Church-Turing Thesis �or from a constructive point of view. Giocoli�s

24Theory of Games and Economic Behavior by John von Neumann and Oskar Mor-
genstern, Third Edition, Princeton University Press, Princeton, NJ, 1953.
25Fixing the Point: The Contribution of Early Game Theory to the Tool-Box of Modern

Economics by Nicola Giocoli, Journal of Economic Methodology, Vol. 10, No. 1, pp.
1-39; 2003

9



incorrect and misleading claims (particularly in §4.2 and §5, pp.17-24, ibid) are
almost entirely due to a lack of any understanding of the meaning of construc-
tive mathematics �and even of Hilbert�s formalism. I shall leave a complete
analysis of these infelicities for a di¤erent exercise, but su¢ ce it to point out
that these kinds of infelicities permeate the subject of orthodox game theory �
whether in its behavioural, experimental of computational variant.

2.2 Mathematical Economics

It will not be an exaggeration to state that the �crown jewels�of mathematical
economics are the proof of the existence of (a Walrasian) equilibrium26 and the
two fundamental theorems of welfare economics. In relation to the former, two
of the practitioners of so-called computable general equilibrium theory had this
to say27 :

"The major result of postwar mathematical general equilibrium
theory has been to demonstrate the existence of such an equilibrium
by showing the applicability of mathematical �xed point theorems
to economic models. ... Since applying general equilibrium models
to policy issues involves computing equilibria, these �xed point theo-
rems are important: It is essential to know that an equilibrium exists
for a given model before attempting to compute that equilibrium.
.....
...
The weakness of such applications is twofold. First, they provide

non-constructive rather than constructive proofs of the existence of
equilibrium; that is, they show that equilibria exist but do not pro-
vide techniques by which equilibria can actually be determined. Sec-
ond, existence per se has no policy signi�cance. .... Thus, �xed point
theorems are only relevant in testing the logical consistency of mod-
els prior to the models� use in comparative static policy analysis;
such theorems do not provide insights as to how economic behavior
will actually change when policies change. They can only be em-
ployed in this way if they can be made constructive (i.e., be used to
�nd actual equilibria). The extension of the Brouwer and Kakutani
�xed point theorems in this direction is what underlies the work of
Scarf .... on �xed point algorithms ...."
ibid, pp12, 20-1; italics added

However, in Scarf�s classic book of 197328 there is the following characteris-
tically careful caveat to any unquali�ed claims to constructivity of the algorithm
he had devised:
26Existence of an Equilibrium for a Competitive Economy by Kenneth J. Arrow and Gerard

Debreu, Econometrica, Vo. 22, No. 3, July, pp. 38-63; 1954
27Applying General Equilibrium by Shoven, John B and John Whalley, Cambridge

University Press, Cambridge. 1992
28The Computation of Economic Equilibria, by Herbert Scarf (with the collaboration

of Terje Hansen), Yale University Press, New Haven and London, 1973.
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"In applying the algorithm it is, in general, impossible to select
an ever �ner sequence of grids and a convergent sequence of sub-
simplices. An algorithm for a digital computer must be basically
�nite and cannot involve an in�nite sequence of successive re�ne-
ments. ....... The passage to the limit is the nonconstructive aspect
of Brouwer�s theorem, and we have no assurance that the subsimplex
determined by a �ne grid of vectors on S contains or is even close
to a true �xed point of the mapping."
ibid, p.52; italics added

Unfortunately, however, all of these claims are false:

1. Scarf did not �extend the Brouwer and Kakutani �xed point theorems in
[the] direction�of constructivity.

2. It is not necessary for the �xed point theorems to be made constructive
for them to �be employed in this way�; it is su¢ cient for the economic
propositions to be formulated recursion theoretically and, then, to appeal
to one or another of the celebrated �x-point theorems of computability
theory.

3. It is not correct that �the passage to the limit is the nonconstructive aspect
of Brouwer�s theorem�.

Obviously, these are the kinds of infelicities that permeate the subject of
mathematical economics and the only reasonable explanation with which I can
make sense of them �when even outstanding theorists of the calibre of Scarf
make such surprisingly false assertions � is: ignorance! But quite apart from
ignorance, which can hopefully be dispelled by an investment in knowledge (!!),
there is what I call the inexplicable commitment to real analysis based on its
most anti-algorithmic mode, i.e., the mathematics of ZFC �set theory with the
axiom of choice. Why this strange commitment? Why not model the economics
of general equilibrium theory, ab initio, with constructive mathematics or recur-
sion theory? A possible justi�cation, but not an explanation, also replete with
analytic infelicities and monumental ignorance, even of the basics of algorithmic
mathematics �whether it is of constructive mathematics, recursion theory or
even combinatorial mathematics �seems to be something like the following29 :

"Computing with real numbers o¤ers some important advantages
in the context of scienti�c computing30 . It is also relevant to ap-

29Computation and Complexity in Economic Behavior and Organization by Ken-
neth R. Mount and Stanley Reiter, Cambridge University Press, Cambridge, 2002.
30At this point the authors refer to the book, Complexity and Real Computation by

Blum, Lenore, Felipe Cucker, Michael Shub and Steve Smale, Springer Verlag, New York,
1988. However, there is no evidence whatsoever that the authors have either read or, if
they have, understood the structure and contents of this �ne book. I have had my say
on the nature of the claims in Complexity and Real Computation in: A Computable
Economist�s Perspective on Computational Complexity, Chapter 4 (pp. 36-83; especially,
§4.4), Handbook of Research on Complexity edited by J. Barkley Rosser, Jr., Edward
Elgar, Cheltenham, UK.
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plications in economic theory. Economic models typically use real
variables and functions of them. A model of computing in which
the elementary operations are functions of real variables allows that
model to be directly applied to standard economic models, with-
out requiring an analysis of approximations in each application. In
cases in which the analysis in the economic model is itself numerical,
then, as is the case with numerical analysis generally, computation
is necessarily �nite and typically carried out by persons who use a
�nite-state machine."
ibid, pp. 1-2; italics added.

This is a tissue of nonsense, but this is the kind of reason why a complete
overhaul of mathematical economics in an algorithmic mode is imperative.

2.3 Statistics

The path towards an algorithmic vision of inductive inference from �nite se-
quences is most easily subverted by varieties of Popperian infelicities that per-
meate the methodology of orthodox statistical inference, particularly in econo-
metrics. I shall only outline a small fragment of the many infelicities in the
Popperian approach to inductive inference31 . As was customary with all his
claims, he boldly declared that32 :

[T]he method of falsi�cation presupposes no inductive inference,
but only the tautological transformation of deductive logic whose
validity is not in dispute.
ibid, p.42; italics added.

Paradoxically, today, neither of these assertions are considered true. No
one with even a semblance of knowledge of the development of �deductive logic�
as a branch of mathematical logic would dream of being so categorical about
its �validity not being in dispute�, particularly if employed by algorithmically
rational agents, as in algorithmic economics.
Economic Methodology, as distinct from the methodology of mathematical

economics, explicitly and implicitly, has been deeply in�uenced by three of Pop-
per�s seminal ideas: falsi�ability, the logic of scienti�c discovery and the twin
issues of induction and inductive inference.33 . Underpinning them, in almost
all their rami�cations, is the ubiquitous spectre of rationality and its concomi-
tants: rational behaviour, the rational scientist, the rational scienti�c enterprise
and the rationality of the autonomous processes of nature. All these seem to

31For more details I refer to chapter 14 in my forthdomcing book, Computable Founda-
tion for Economics, Routledge, London, 2009.
32Objective Knowledge: An Evolutionary Approach by Karl R. Popper, Oxford

University Press, Oxford, UK, 1972
33The collection of essays: The Popperian Legacy of Economics edited by Neil De

Marchi Cambridge University Press, Cambridge, UK, 1988, is a good place to get an organised
guide to the pervasive in�uence of Popperian ideas in economic methodology.
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have fallen on receptive ears, at various levels and practice, in the economic
community. None of them have been given any kind of algorithmic content.
Paradoxically, however, these three seminal Popperian conceptual contribu-

tions come in the form of negative precepts. Foremost of these negative precepts
is, of course, that there is no such thing as a logic of scienti�c discovery to dis-
cover; that theories can only be refuted and held, at most, provisionally, waiting
for them to be refuted; and, then, there was that insistence about the impossi-
bility of inductive probability.
Behind these vehement negative precepts there was, implicitly, the insistence

that the epistemologist was confronted by an environment that was lawful, about
which theories could be conjectured, albeit provisionally. As pointed out by
Harré in his surprisingly pungent �Obituary�of Popper:

. . . Popper�s methodology of conjecture and refutation, based upon
the idea of the rationality of rejecting hypotheses which have been
shown at a particular time and place to be false, also depends upon
an assumption of a form of the uniformity of nature. In his case,
it is the negative assumption that the universe will not change in
such a way as to make what was discon�rmed today true tomorrow.
Popper�s methodology of conjecture and refutation makes no head-
way in the testing of that proposition. His claim to have solved the
problem of induction must now be rejected.[?]

I shall not address speci�c issues of economic methodology from any par-
ticular Popperian point of view here. Instead, I aim, hopefully, to provide less
negative visions of two of these great Popperian themes and help disseminate
a more positive attitude towards the rich possibilities of pursuing an inductive
methodology in the search for laws of scienti�c discovery, buttressed by a dy-
namic, algorithmic, reinterpretation of the meaning of falsi�ability. (Classical)
recursion theory and applied recursion theory, in the form of algorithmic com-
plexity theory, will be my conceptual and methodological tools in this adventure.
In his 1972 Addendum to the 1972 edition of The Logic of Scienti�c

Discovery, Popper was quite explicit about the logical basis of falsi�ability34 :

"[T]he content or the testability (or the simplicity . . . ) of a
theory may have degrees, which may thus be said to relativize the
idea of falsi�ability (whose logical basis remains the modus tollens."
ibid, p.135; italics in original, bold emphasis added.

It is immediate that two dubious mathematical logical principles are implic-
itly invoked in any falsi�ability exercise based on Modus (Tollendo) Tollens:

34 I have often wondered why the German original �Forschung�was translated as �Scienti�c
Discovery�! I am sure there must be a perfectly �rational� Popperian explanation for the
particular choice of words in English. Something like The Logic of Scienti�c Research or The
Logic of Scienti�c Investigation would have been a more faithful translation of the title (and
its contents). I shall, whenever I refer to this book, refer to it as LdF, even though it will be to
Karl R.Popper (1972a):The Logic of Scienti�c Discovery by Karl R. Popper, Hutchinson
& CO, London, UK, 1972.
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principium tertium non datur and proof by contradiction. This means an ad-
herence to non-constructive methods in all cases involving in�nite alternatives.
How experiments can be arranged and methods devised to test for falsi�ability,
even abstracting away from inductive inferential problems, in a non-constructive
environment, escapes me. Indeed, how any method to test for falsi�ability can
be anything other than algorithmic, in some sense, is beyond my understanding.
It is this kind of reliance on traditional logic and a limited knowledge of

the vast developments in mathematical logic in the 20th century that I �nd
mysterious in a philosopher who seemed to be encyclopedic in his awareness of
so much else. I �nd no evidence, in my perusal and attempted reading of as
much as possible of Popper�s voluminous writings, of any awareness, either, of
the fact that mathematical logic had itself branched o¤, in the 20th century,
into four or �ve sub-disciplines and, in any case, into: set theory, proof theory,
recursion theory and model theory. This is the kind of reason why Glymour,
for example, was scathing in his criticism of a class of philosophers in general,
but of Popper, in particular35 :

"With only a little logical knowledge, philosophers in this period
understood the veri�able and the refutable to have special logical
forms, namely as existential and universal sentences respectively.
There was, implicitly a positivist hierarchy . . . . Positivists such as
Schlick con�ned science to and meaning to singular data and veri�-
able sentences; �anti-positivists�, notably Popper, con�ned science to
the singular data and falsi�able sentences. In both cases, what could
be known or discovered consisted of the singular data and veri�able
sentences, although there is a hint of something else in Popper�s
view".
ibid, p.268.

On the other hand, if one feels it is necessary to retain �delity to Pop-
per�s reliance on Modus (Tollendo) Tollens as an underpinning for falsi�ability
exercises36 , then it seems to me that the best way to do so would be via formal-
izations using recursion theory. Classical logical principles retain their validity
but methods are given algorithmic content which makes them implementable
devices in experimental design.

3 Towards AlgorithmisingMathematical Economics,
Game Theory and Statistics

"Does the axiom of choice create the choice set? Can one supply
a missing set just by a declaration of existence? Of course no axiom,

35Clark Glymour:�The Hierarchies of Knowledge and the Mathematics of Discovery�,
Chapter 14, in: Machines and Thought - The Legacy of Alan Turing edited by
P.J.R.Millican and A.Clark, Oxford University Press, Oxford, UK, 1996.
36Even although it is easy to show that it is neither necessary nor su¢ cient
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no declaration of existence, can create a real object, but it is not the
purpose of an axiom to create a real object. An axiom has a part to
play only in a formal system. The axiom of choice is a limitation on
the use of the word set in formalised set theory. The acceptance or
rejection of the axiom of choice is a decision about the use of a word.
Some prefer one use of the word and others a di¤erent sue. To ask
if the axiom of choice is true is to confuse the world of mathematics
with the real world."
R. L. Goodstein: Existence in Mathematics, p.82, italics in orig-

inal; in: Logic and Foundations of Mathematics Dedicated
to Prof. A. Heyting on his 70th Birthday, pp. 70-82, Wolters-
Noordho¤ Publishing, Groningen, The Netherlands.

3.1 Mathematical Economics

In his classic and thoughtful Three Essays on the State of Economic Sci-
ence37 , Tjalling Koopmans observed (p. 60; italics added):

�Before turning to [the] discussion [of the model of competitive
equilibrium] it is worth pointing out that in this particular study
our authors [Arrow and Debreu] have abandoned demand and sup-
ply functions as tools of analysis, even as applied to individuals.
The emphasis is entirely on the existence of some set of compati-
ble optimising choices . . . . The problem is no longer conceived as
that of proving that a certain set of equations has a solution. It has
been reformulated as one of proving that a certain number of max-
imizations of individual goals under independent restraints can be
simultaneously carried out�

The new emphasis brought with it a new formalism and a mathematics to en-
capsulate it that was entirely divorced from numerical meaning and algorithmic
signi�cance. The continuous in its real number versions came to be the vehi-
cle of analysis and algorithmic implementations required approximations which
were, correspondingly, divorced from theory. It is not as if it was necessary to
recast the fundamental economic problem of �nding equilibrium solutions be-
tween supply and demand, �even as applied to individuals�, as one of �nding
a proof of the existence a solution to �maximizations of individual goals under
independent restraints�. As Steven Smale perceptively remarked, but over two
decades later �yet more than thirty years ago38 ::

"We return to the subject of equilibrium theory. The existence
theory of the static approach is deeply rooted to the use of the math-
ematics of �xed point theory. Thus one step in the liberation from

37Three Essays on The State of Economic Science by Tjalling C. Koopmans,
McGraw-Hill Book Company, New York, 1957.
38�Dynamics in General Equilibrium Theory�by Steve Smale, American Economic Re-

view, Vol. 66, No.2, May, pp.288-94, 1976.
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the static point of view would be to use a mathematics of a di¤erent
kind. Furthermore, proofs of �xed point theorems traditionally use
di¢ cult ideas of algebraic topology, and this has obscured the eco-
nomic phenomena underlying the existence of equilibria. Also the
economic equilibrium problem presents itself most directly and with
the most tradition not as a �xed point problem, but as an equation,
supply equals demand. Mathematical economists have translated the
problem of solving this equation into a �xed point problem.�

. . . ..
�I think it is fair to say that for the main existence problems

in the theory of economic equilibrium, one can now bypass the �xed
point approach and attack the equations directly to give existence of
solutions, with a simpler kind of mathematics and even mathematics
with dynamic and algorithmic overtones.�
ibid, p.290; italics added.

The �mathematics of a di¤erent kind�that Smale refers to, surely, is any vari-
ant of algorithmic mathematics � constructive analysis, computability theory
(including computable analysis) and even combinatorial mathematics. Given
the algorithmic foundations of both constructive analysis and computability
theory and the intrinsic dynamic form and content of algorithms, it is clear
that this will be a �mathematics with dynamic and algorithmic overtones�. This
means, thus, that algorithmic economics is a case of a new kind of mathematics
in old economic bottles. The �new kind of mathematics�implies new questions,
new frameworks, new proof techniques - all of them with algorithmic and dy-
namic content for digital domains and ranges.
Taking a cue from a perceptive mathematician, Steve Smale, to remind us

that the �economic equilibrium problem presents itself most directly and with
the most tradition not as a �xed point problem, but as an equation, supply
equals demand�, and remembering that economic quantities are constrained to
be, rational or integer valued39 , the natural formalization is clearly in terms
of a Diophantine Decision Problem. Such a formalization, in one fell swoop,
encapsulates the idea of �mathematics with dynamic and algorithmic overtones�
to �attach the equations directly to give existence of solutions�. But there is
a price to pay: algorithmic undecidability. I shall only give an idea of the
formalization, keeping in mind just two important constraints in thinking about
the classic problem of equating supply and demand: that they are formulated in
the form of equations; that the constants and variables that enter the individual
supply and demand equations are constrained to be integer or rational valued
(apart from, of course, being non-negative).

39Much fuss is made of the importance of non-negative constraints in the formalization of
the economic optimization problem. Even more plaudits are granted the so-called perceptive
observation that �counting equations and variables� is not an adequate way to study the
problem of the existence of equilibirum prices and quantities. In all this fuss and brouhaha,
no one seems to have wondered why these non-negative quantities and prices were also not
constriend to be integer or rational valued, as they must be in the real world of economics.
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Then, the general supply=demand problem can be formulated, abstractly as
follows:

De�nition 1 A relation of the form

D (a1; a2; :::::; an; x1; x2; :::; xm) = 0

where D is a polynomial with integer coe¢ cients with respect to all the vari-
ables a1; a2; :::::; an; x1; x2; :::; xm (also integer or rational valued), separated into
parameters a1; a2; :::::; an and unknowns x1; x2; :::; xm, is called a paramet-
ric Diophantine equation.

De�nition 2 D in De�nition 1 de�nes a set z of the parameters for which
there are values of the unknowns such that:

ha1; a2; :::::; ani 2 F () 9x1; x2; :::; xm [D (a1; a2; :::::; an; x1; x2; :::; xm) = 0]

Loosely speaking, the relations denoted in the above two de�nitions can be
called Diophantine representations. Then sets, such as z, having a Diophantine
representation, are called simply Diophantine. With this much terminology at
hand, it is possible to state the fundamental problem of Diophantine equations
as follows:

Problem 3 A set, say ha1; a2; :::::; ani 2 F , is given. Determine if this set is
Diophantine. If it is, �nd a Diophantine representation for it.

Of course, the set z may be so structured as to possess equivalence classes of
properties, P and relations, R:Then it is possible also to talk, analogously, about
a Diophantine representation of a Property P or a Diophantine representation
of a Relation R: For example, in the latter case we have:

R (a1; a2; :::::; an)() 9x1; x2; :::; xm [D (a1; a2; :::::; an; x1; x2; :::; xm) = 0]

Hence, given, say partially ordered preference relations, it is possible to ask
whether it is Diophantine and, if so, search for a Diophantine representation
for it. Next, how can we talk about the solvability of a Diophantine repre-
sentation? This is where undecidability (and uncomputability) will enter this
family of �inviting �ora of rare equations� - through a remarkable connection
with recursion theory, summarized in the next Proposition:

Proposition 4 Given any parametric Diophantine equation, D, it is possible
to construct a Turing Machine, M , such that M will eventually Halt, begin-
ning with a representation of the parametric n-tuple, ha1; a2; :::::; ani, i¤ D in
De�nition 1 is solvable for the unknowns, x1; x2; :::; xm.
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But, then, given the famous result on the Unsolvability of the Halting prob-
lem for Turing Machines, we are forced to come to terms with the unsolvability
of Diophantine equations40 . Hence, the best we can do, as mathematical econo-
mists, and even as algorithmically rational behavioural agents, so long as the
constraints are Diophantine, is to act according to the gentle and humble pre-
cepts of Linnean classi�cations: �collect specimens, to describe them with loving
care, and to cultivate them for study under laboratory conditions�, as George
Temple wisely noted, when referring to the study and use of Diophantine equa-
tions41 :

"The group of problems which I propose to describe belong to
that Cinderella of pure mathematics- the study of Diophantine equa-
tions. The closely guarded secret of this subject is that it has not
yet attained the status and dignity of a science, but still enjoys the
freedom and freshness of such pre-scienti�c study as natural history
compared with botany. The student of Diophantine equations ... is
still living at the stage where his main tasks are to collect speci-
mens, to describe them with loving care, and to cultivate them for
study under laboratory conditions. The work of classi�cation and
systematization has hardly begun. ....
... An inviting �ora of rare equations and exotic problems lies

before a botanical excursion into the Diophantine �eld."
ibid, p.233.; italics in original

The mathematical economists have rushed into �Cantor�s Paradise�, arming
themselves with unreal axioms, to use non-algorithmic mathematics to formalize
a subject that is intrinsically algorithmic and providing false hopes, time after
time.

3.2 Game Theory

I shall con�ne myself to the formalization of Zermelo�s game, simply to demon-
strate �once again �the intrinsic algorithmic nature of the original game the-
oretic model, but also to show a continuity and a consistency with the example
in the precious subsection.
In the case of game theory the subversion into its non-algorithmic, subjective

vision of economic behaviour in adversarial situations was a direct consequence
of the �xed point approach pioneered by von Neumann and Nash. I think
I can make a strong case to substantiate this assertion42 . My starting point

40 It must, of course, be remembered that all this is predicated upon an acceptance of the
Church-Turing Thesis.
41Linearization and Delinearization by George Temple, Proceedings of the Interna-

tional Congress of Mathematicians, pp. 233-47, Cambridge University Press, Cambridge,
1958.
42 In direct analogy with the kind of observation made by Steve Smale about transforming an

intrinsic equation approach to the problem of supply-demand equilibrium to one of inequalities
formulated as �xed point problems.
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would be Zermelo�s celebrated lecture of 1912 (op.cit, Zermelo, 1913) and his
pioneering formulation of an adversarial situation into an alternating game and
its subsequent formulation and solution as a mini-max problem by Jan Mycielski
in terms of alternating the existential and universal quanti�ers.
The Zermelo game has no subjective component of any sort. It is an entirely

objective game of perfect information, although it is often considered, incorrectly
in my opinion, part of the orthodox game theoretic tradition. Let me describe
the gist of the kind of game considered by Zermelo, �rst. In a 2-player game of
perfect information, alternative moves are made by the two players, say A and
B. The game, say as in Chess, is played by each of the players �moving�one of
a �nite number of counters available to him or her, according to speci�ed rules,
along a �tree�- in the case of Chess, of course, on a board of �xed dimension,
etc. Player A, say, makes the �rst move (perhaps determined by a �chance�
mechanism) and places one of the counters, say a0 2 A0; on the designated
�tree�at some allowable position; player B observes the move made by A, with
perfect recall, the placement of the counter a0 - and makes the second move by
placing, say b1 2 B1; on an allowable position on the �board�; and so on. Let
us suppose these alternating choices terminate after Player B�s nth move; i.e.,
when bn 2 Bn has been placed in an appropriate place on the �board�.

De�nition 5 A play of such a game consists of a sequence of such alternative
moves by the two players

Suppose we label the alternating individual moves by the two players with
the natural numbers in such a way that:

1. The even numbers, say, a(0); a(2); :::::; a(n�1) enumerate player A�s moves;

2. The odd numbers, say, b(1); b(3); :::::::; b(n) enumerate player B�s moves;

� Then, each (�nite) play can be expressed as a sequence, say 
, of
natural numbers.

Suppose we de�ne the set � as the set of plays which are wins for player A;
and, similarly, the set � as the set of plays which are wins for player B.

De�nition 6 A strategy is a function from any (�nite) string of natural num-
bers as input generates a single natural number, say �, as an output.

De�nition 7 A game is determined if one of the players has a winning strat-
egy; i.e., if either � 2 � or � 2 �.

Theorem 8 Zermelo�s Theorem: 9 a winning strategy for player A, whatever
is the play chosen by B; and vice versa for B

Remark 9 This is Zermelo�s version of a minimax theorem in a perfect recall,
perfect information, game.
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It is in connection with this result, and the minimax form of it, that Stein-
haus observed, with considerable perplexity43 :

"[My] inability [to prove the minimax theorem] was a consequence
of the ignorance of Zermelo�s paper in spite of its having been pub-
lished in 1913. .... J von Neumann was aware of the importance of
the minimax principle44 ; it is, however, di¢ cult to understand the
absence of a quotation of Zermelo�s lecture in his publications."

ibid, p. 460; italics added

Why didn�t von Neumann refer, in 1928, to the Zermelo-tradition of alter-
nating games? The point I wish to make is something else and has to do with
the axiom of choice and its place in game theory. So, let me return to this
theme.
Mycielski (cf., Steinhaus, op.cit, pp. 460-1) formulated the Zermelo minimax

theorem in terms of alternating logical quanti�ers as follows45 :
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Now, summarizing the structure of the game and taking into account My-
cielski�s formulation in terms of alternating we can state as follows:

1. The sequential moves by the players can be modelled by alternating exis-
tential and universal quanti�ers.

2. The existential quanti�er moves �rst; if the total number of moves is odd,
then an existential quanti�er determines the last chosen integer; if not,
the universal quanti�er determines the �nal integer to be chosen.

3. One of the players tries to make a logical expression, preceded by these
alternating quanti�ers true; the other tries to make it false.

4. Thus, inside the braces the win condition in any play is stated as a propo-
sition to be satis�ed by generating a number belonging to a given set.

5. If, therefore, we can extract an arithmetical form - since we are dealing
with sequences of natural numbers - for the win condition it will be possible
to discuss recursive solvability, decidability and computability of winning
strategies.

The above de�nitions, descriptions and structures de�ne, therefore, an Arith-
metical Game of length n. Stating the Zermelo theorem in a more formal and
general form, we have:
43Games, An Informal Talk by H. Steinhaus, The American Mathematical Monthly,

Vol. 72, No. 5, May, pp. 457-468, 1965.
44 In, Zur Theorie der Gesellsschaftsspiele by J. von Neumann,Mathematische Annalen,

Vol. 100, pp. 295-320, 1928.
45This is the formal way Gödel derived undecidable sentences.
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Theorem 10 Arithmetical Games of �nite length are determined.

The more general theorem, for games of arbitrary (non-�nite) length, can
be proved by standard diagonalization arguments and is:

Theorem 11 Arithmetical Games on any countable set or on any set which
has a countable complement is determined.

Now, enter the axiom of choice! Suppose we allow, at �rst, any unrestricted
sets � and �: Then, for example if they are assumed to be imperfect sets46 ,
the game is not determined. If we work within ZFC, then such sets are rou-
tinely acceptable and lead to games that cannot be determined - even if we
assume perfect information and perfect recall. Surely, this is counter-intuitive?
For this reason, this tradition in game theory chose to renounce the axiom of
choice and work with an alternative axiom that restricts the class of sets within
which arithmetical games are played. The alternative axiom is the axiom of
determinacy, introduced by Steinhaus:

Axiom 12 The Axiom of Determinacy: Arithmetical Games on every sub-
set of the Baire line47 is determined.

The motivation given by Steinhaus (op.cit, pp. 464-5) is a salutary lesson
for mathematically minded economists or economists who choose to accept the
axiom of choice on �democratic�principles or economists who are too lazy to
study carefully the economic meaning of accepting a mathematical axiom:

"It is known that [the Axiom of Choice] produces such conse-
quences as the decomposition of a ball into �ve parts which can be
put together to build up a new ball of twice the volume of the old
one [the Banach-Tarski paradox], a result considered as paradoxical
by many scientists. There is another objection: how are we to speak
of perfect information for [players] A and B if it is impossible to
verify whether both of them think of the same set when they speak
of ["�"]? This impossibility is inherent in every set having only [the
Axiom of Choice] as its certi�cate of birth. In such circumstances it
is doubtful whether human beings will ever play really [an in�nite
game].
All these considerations impelled me to place the blame on the

Axiom of Choice. Sixty years of the theory of sets have elapsed since
this Axiom was proclaimed, and some ideas have .... convinced me
that a purely negative attitude against [the Axiom of Choice] would
be dangerous to propose. Thus I have chosen the idea of replacing
[the Axiom of Choice] by the [above Axiom of Determinacy].
italics added.

46A set F is a perfect set if it is a closed set in which every point is a limit point.
47A Baire line is an irrational line which, in turn, is a line obtainable from a continuum by

removing a countable dense subset.
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There is a whole tradition of game theory, beginning at the beginning, so to
speak, with Zermelo, linking up, via Rabin�s modi�cation of the Gale-Stewart
in�nite game, to recursion theoretic formulations of arithmetical games under-
pinned by the axiom of determinacy and completely independent of the axiom
of choice and eschewing all subjective considerations. In this tradition
notions of e¤ective playability, solvability and decidability questions take on
fully meaningful computational and computable form where one can investigate
whether it is feasible to instruct a player, who is known to have a winning strat-
egy, to actually select a sequence to achieve the win. None of this is possible in
the orthodox tradition, which suggests there are no alternative mathematics for
investigating, mathematically, adversarial situations in the social sciences.
Finally, once formulated as an alternating arithmetical game, it is easy to

consider the problems of e¤ective playability, solvability and decidability in
terms of the framework of Hilbert�s tenth Problem, i.e., as a Diophantine Deci-
sion Problem - just as in the case of the problem of supply-demand equilibrium,
as discussed in the previous subsection.

3.3 Statistics

Popper does not seem to have paid much attention to the great achievements
in recursion theory, proof theory or model theory to substantiate his case for
empirical methodology or for falsi�cation. As to why he did not seek recourse
to recursion theory, in the case of inductive inference or the logic of scienti�c
discovery, could it, perhaps, be because such a framework may have cast doubts
on his negative critique against these thorny concepts? One can only speculate
and I do speculate simply because these three branches of modern mathematical
logic provide literally the proverbial �tailor-made� formalisms for empirically
implementable mathematical structures for falsi�ability, the logic of scienti�c
discovery and for induction in all its manifestations.
There are two characteristically prescient Popperian observations very early

on in Ldf :

[I] am going to propose . . . that the empirical method shall be char-
acterized as a method that excludes precisely those ways of evad-
ing falsi�cation which . . . are logically possible. According to my
proposal, what characterizes the empirical method is its manner of
exposing to falsi�cation, in every conceivable way, the system to be
tested. Its aim is not to save the lives of untenable systems but, on
the contrary, to select the one which is by comparison the �ttest, by
exposing them all to the �ercest struggle for survival.

. . . The root of [the problem of the validity of natural laws] is the ap-
parent contradiction between what may be called �the fundamental
thesis of empiricism� - the thesis that experience alone can decide
upon the truth or falsity of scienti�c statements - and Hume�s real-
ization of the inadmissibility of inductive arguments. This contra-
diction arises only if it is assumed that all empirical scienti�c state-
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ments must be �conclusively decidable�, i.e., that veri�cation and
their falsi�cation must both in principle be possible. If we renounce
this requirement and admit as empirical also statements which are
decidable in one sense only - unilaterally decidable and, more espe-
cially, falsi�able - and which may be tested by systematic attempts
to falsify them, the contradiction disappears: the method of falsi�-
cation presupposes no inductive inference, but only the tautological
transformations of deductive logic whose validity is not in dispute.

Firstly, in what other way, if not by means of an algorithm, can we under-
stand the processes implied by implementing an empirical method?
Secondly, Popper endeavours to drive a wedge between veri�ability and fal-

si�ability in terms of decidability - but, we know, based on Modus (Tollendo)
Tollens. There is, however, a much simpler way to drive this wedge and preserve
the algorithmic character of implementable empirical methods Moreover, it will
not be necessary to make the incorrect claim that �the method of falsi�cation
presupposes no inductive inference�.
Thirdly, there is the need to be precise about what is meant by a natural

law and a scienti�c statement, before even discussing the meaning of their truth
or falsity.
I shall take it that Popper means by a natural law something as paradigmatic

as, for example, Newton�s Law of Motion or, at a slightly more sophisticated
level, say, the General Theory of Relativity. As an economist, I have never felt
that we have the equivalent of a natural law, in the above senses, in economic
theory. Perhaps, at a much lower level sophistication, we may, as economists,
invoke one of the popular theories of growth, say Solow�s Growth Theory.
Such natural laws, for example Newton�s Laws of Motion are framed, when

mathematized, as formal dynamical systems. Of such systems we ask, or test,
whether, when they are appropriately initialized, they enter the de�nable basin
of attraction of, say, a limit point, a limit cycle, a strange attractor or, perhaps,
get trapped in the boundaries that separate a limit cycle and a strange attractor.
In the case of the Solow Growth Model, theory predicts that the dynamical
system, for all economically meaningful initial conditions, enters the basin of
attraction of a limit point. The theory and its law can, in principle be �veri�ed�.
However, it is for very few dynamical systems that we can answer the above

type of question unambiguously, i.e., �veri�ably�. This is the key point made by
Popper in his almost lifelong quest for a kind of scepticism about theories and the
natural laws inherent in them. It is just that such a scepticism comes naturally
to those accustomed to formalizing in terms of proof theory, model theory and
recursion theory - i.e., for those working in the domain of the constructive,
non-standard or computable numbers.
Moreover, a natural law in any of the above senses is, at least from Popper�s

point of view, which I think is the commonsense vision, is a scienti�c statement,
as indeed referred to as such by Popper in the above characterization. What,
next, does it mean to formalize the notion of a scienti�c statement? Clearly, in
the form of something like a well formed formula in some formal, mathematical,
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logic. Obviously, what is, then, meant by �deciding upon the truth or falsity
of scienti�c statements�, must also be a commonsense interpretation; i.e., the
�truth�or �falsity�of the implications of the scienti�c statement which encap-
sulates the natural law. I shall assume, therefore, that the set of meaningful
scienti�c statements form an enumerable in�nity.
Fourthly, Popper claims that the distinction between veri�ability and falsi-

�ability depends on allowing for a certain kind of one-way decidability. More
precisely, veri�ability is characterized by a �strong�sense of decidability and fal-
si�ability by a somewhat �weaker�concept of decidability. In Popper�s case, of
course, the underpinning to formalize the distinction between a �strong�and a
�weak�sense is Modus (Tollendo) Tollens. I seek a more dynamic version of the
possibility of such a distinction, simply because many, if not most, meaningful
natural laws are framed dynamically or as dynamical systems. By �dynamically�,
I mean, the implication of the theory, when formulated as a natural law, and
subject to experimental procedures, generates a sequence of outcomes, usually
numerical48 , which has to be sequentially monitored and tested.
Fifth, there is a need to be absolutely precise about what Popper means,

formally, by �exposing to falsi�cation, in every conceivable way, the system to
be tested�. How many conceivable ways would there be, given an �experimen-
tal method�, to �expose to falsi�cation the system to be tested�? Suppose, as
in conventional economic theory, the domain of de�nitions is the real number
system. Then, in principle, an uncountable in�nity of �conceivable ways�would
have to be devised for �the system to be tested�. This is meaningless in any
empirical system.
The best that can be attempted, in principle, is to enumerate a countable

in�nity of empirical methods and for the case, for example, of natural laws
formalized as dynamical systems, to quantify the notion of every conceivable
way by varying the initial conditions in a precisely formalized countably in�-
nite, enumerable, mode - i.e., algorithmically - but not necessarily subject to
the Church-Turing Thesis. In other words, algorithmically could also be encap-
sulated within the broader canvas of constructive mathematics (or also more
narrowly than even recursion theory)49 .
Finally, there is the need to be precise (and sensible) about what Popper

could have meant by �select the one which is by comparison the �ttest, by
exposing them all to the �ercest struggle for survival�. It is here, contrary
to enlightened Popperian critics, that I �nd that inductive inference enters the
Popperian world with almost a vengeance. How does one formalize the selection
criterion that is suggested by Popper? What could be meant by ��ttest�? Surely
not some facile neo-Darwinian formalism via, say, genetic algorithms in the
conventional sense.
This is where Glymour and Harré, for example, presumably locate Popper�s

adherence to the Platonic assumption of the �unalterability of nature�. For, if

48 If not explicitly numerical then, in principle, codifable number theoretically using one of
the well-known procedures emanating from �Gödel Numbering�.
49 I shall, however, work within the framework of classical recursion theory here and, hence,

subject to the Church-Turing Thesis.
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not, we cannot, of course, �expose them all�to any kind of test, let alone the
more speci�c test of �the �ercest struggle for survival�. By the time we come,
say, to scienti�c statement, say, #10948732765923, and the natural law implied
by it, and say empirical method #371952867 for testing it, there is no guarantee
that our theoretical world picture would not have changed - from the Ptolemaic
world vision to the Copernican vision. This would mean some of the scienti�c
statements had become meaningless and others, not in the original enumerated
list, become feasible candidates for testing.
I shall circumvent these issues by suggesting that we interpret Popper�s cri-

terion of the ��ttest�by the analogous criterion, in some precise sense formaliz-
able notion, of �most likely�or �most plausible�by invoking yet another historical
nemesis of Popper: Ockham.
From here, via Algorithmic Statistics, to justify inductive inference even in

a Popperian framework is quite simple. I shall, instead, discuss the possibility
and meaning of algorithmic falsi�cation.
My suggestion for the algorithmic formalism of falsi�ability proceeds as fol-

lows. First, three de�nitions.

De�nition 13 Recursive Set
S � @ is recursive i¤ 9 a Turing Machine for deciding wether any given member
of @ belongs to S.

De�nition 14 Decidable Set
A set S is decidable if, for any given property P (s), 8s 2 S, 9 a Turing Machine
such that it halts i¤ P (s) is valid.

De�nition 15 Recursively Enumerable Sets
S � @ is recursively enumerable (R.E) i¤ it is either empty or the range of a
Turing Machine (i.e., the range of a partial recursive function).

Thus, for any decidable set, we know there will be e¤ective experimental
methods - i.e., algorithms - to characterize any member of the set. It is clear
from the above de�nitions that a recursive set is decidable. This is the universe
of the veri�able.
Falsi�ability and veri�ability are methods, i.e., procedures to decide the truth

value of propositions. Popper claims, in view of his allegiance to classical logic
and Modus )Tollendo) Tollens that the only viable procedure in a scienti�c
enterprise is one which is capable of falsifying a law. This translates into the
following: a set has to exhibit undecidabilities. This means it is not su¢ cient
to work with an outcome space that is con�ned to recursive sets. A subtle
modi�cation of the de�nition of a recursive set to allow for an open-endedness,
suggested as a requirement by Popper, will achieve it.
The intuitive idea is the following. Suppose the inferred scienti�c statement

and its implied natural law are formalized as the hypothesis that is to be exper-
imentally tested. The idea is that some implication of the hypothesis is to be
veri�ed or falsi�ed. If the set of outcomes of the implication forms a recursive
set, then we know that it is decidable and, hence, veri�able. Suppose, however,
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the set of outcomes of the implications form a recursively enumerable set. Then,
whether or not any particular P (s) is valid is undecidable in the following pre-
cise sense. Given an arbitrary predicted outcome of the experimental procedure
of the law, say n 2 @, we test whether it is the range of a Turing Machine.
If it is, it can, eventually, be decided. If it is not, we will never know. The
next output of the experimental setup, after say output # 32786591 may well
be the con�rming instance. But there will be an open-endedness which means
such laws can, at best, be accepted provisionally if they meet other criteria of
adequacy.
There is a precise sense in which the above scheme generalizes and meets

objections to Popper�s more classical de�nition of falsi�ability. Even although
recursion theory is based on classical logic, the exclusive reliance on Modus
(Tollendo) Tollens and singular data and falsi�able sentences are removed to be
special cases. To put it in a di¤erent way, the veri�able relied on the existential
form for a testable sentence (i.e., 9x s.t S(x)); and the falsi�able relied on the
universal quanti�er (i.e., 8x, s.t S(x)).
In terms of Gödel�s results, my suggestions can be stated in yet another,

equivalent, form. The Gödel scheme shows how to transform any given propo-
sition into one about polynomials. Then, there exist arithmetical equations,
linking two polynomials representing propositions, preceded by some �nite se-
quence of existential and universal quanti�ers that are e¤ectively undecidable.
This is the sense in which there is no longer any reliance on singular data or
singular sentences.
This last observation links the suggested framework for mathematical eco-

nomics and game theory with the one for statistics to provide a uni�ed algo-
rithmic approach to the social sciences.

4 Beyond the Algorithmic Frontiers

"Quite probably, with the development of the modern comput-
ing technique it will be clear that in very many cases it is reasonable
to conduct the study of real phenomena avoiding the intermediary
stage of stylizing them in the spirit of the ideas of mathematics
of the in�nite and the continuous, and passing directly to discrete
models. This applies particularly to the study of systems with a
complicated organization capable of processing information. In the
most developed such systems the tendency to discrete work was due
to reasons that are by now su¢ ciently clari�ed. It is a paradox re-
quiring an explanation that while the human brain of a mathemati-
cian works essentially according to a discrete principle, nevertheless
to the mathematician the intuitive grasp, say, of the properties of
geodesics on smooth surfaces is much more accessible than that of
properties of combinatorial schemes capable of approximating them.
Using the brain, as given by the Lord, a mathematician may

not be interested in the combinatorial basis of his work. But the
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arti�cial intellect of machines must be created by man, and man has
to plunge into the indispensable combinatorial mathematics. For the
time being it would still be premature to draw �nal conclusions about
the implications for the general architecture of the mathematics of
the future."
pp. 30-1, in: Kolmogorov, Andrei Nikolaevich (1983), �Com-

binatorial Foundations of Information Theory and the Calculus of
Probabilities�, Russian Mathematical Surveys, Vol. 38, #4, pp.
29-40; italics added.

The key to the algorithmic revolution in the social sciences if the prescient
observation by Kolomogorov that �the arti�cial intellect of machines must be
created by man, and man has to plunge into the indispensable combinatorial
mathematics.�Every formalization of economic theory indulges in one or another
form of mathematical assumption about the �arti�cial intellect of machines�,
and almost without exception �created by man�. The assumption of the rational
agent used in mathematical economics and game theory endows such an agent
with an �arti�cial intellect of a machine�, albeit that which is idealized beyond
all physical laws and empirical constraints. Then to imagine that this kind of
idealization is similar to idealized billiard balls moving on frictionless surfaces
is simply bad social science.
Thus, in the algorithmic social sciences, the rational agent is modelled as an

algorithmically rational agent �but this was a path suggested �rst by Herbert
Simon more than half a century ago. The economy is assumed, in the algorithmic
social sciences, to be generating �and to be capable of processing �data that
makes algorithmic sense: recursive sequences, recursively enumerable sequences,
and so on. Maury Osborne�s wise remarks on the need to be careful about such
matters is worth recalling50 :

"When you read descriptions of an auction market, think care-
fully of what sense, and for what variables the words continuous or
continuity is being used. ...
....
The distinction between the �market concept�of continuity ...

and the mathematical concept of continuity .. are of great impor-
tance to the pro�t and safety of the market maker.
...
As for the question of replacing rows of closely spaced dots by

solid lines, you can do that too if you want to, and the governors of
the exchange and the community of brokers and dealers who make
markets will bless you. If you think in terms of solid lines while
the practice is in terms of dots and little steps up and down, this
misbelief on your part is worth, I would say conservatively, to the
governors of the exchange, at least eighty million dollars per year.

50The Stock Market and Finance from a Physicist�s Viewpoint by Maury F.M.
Osborne, Crossgar Press, Minneapolis, 1977
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ibid, pp. 33-4.

This estimate of eighty million dollars was made, one must recall, in 1977!
Even more pertinently, especially for the audience at this conference, was a

characteristically perceptive rhetorical question, posed by Richard Hamming51 ,
about the kind of numbers that are appropriate for a theory of probability, when
that theory is being devised with particular applications in mind �and not just
as a theory in its pure mathematical vein:

"Thus without further examination it is not completely evident
that the classical real number system will prove to be appropriate to
the needs of probability. Perhaps the real number system is: (1) not
rich enough - see non-standard analysis; (2) just what we want - see
standard mathematics; or (3) more than is needed - see constructive
mathematics, and computable numbers. ...
What are all these uncountably many non-computable numbers

that the conventional real number system includes?....
The intuitionists, of whom you seldom hear about in the process

of getting a classical mathematical education, have long been ar-
ticulate about the troubles that arise in the standard mathematics
....
What are we to think of this situation? What is the role in prob-

ability theory for these numbers which can never occur in practice?"
ibid, p.190.

The kind of considerations articulated by these pioneers of di¤erent aspects
of algorithmic visions, Kolmogorov, Osborne and Hamming, are those that mo-
tivate the algorithmic social scientist: to build rigorous theoretical models of
aspects of the real world one is trying to probe, taking account of the nature of
the �prober�, the �probed�and the methods used in the �probing�. In contrast to
the non-re�ective, non-algorithmic, social scientist, the algorithmic social sci-
entists does not subscribe to the �one size �ts all�philosophy of mathematical
modelling � i.e., reliance on the orthodox mathematics of real analysis, but-
tressed by a set theory based on ZFC.
Alas, the price the algorithmic social scientist has to pay, for this enlight-

ened approach to the mathematical modelling of the subject matter of the social
sciences, comes in the form of algorithmically de�ned indeterminacies, undecid-
abilties, uncomputabilities and unsovabilities. This is, after all, the stu¤ of
which the real world is made. For too long, the orthodox social scientist, with
an ostensible command of an imperial mathematics has been ruling the roost
by assertions of uniqueness, stability, determinacy and computability of equi-
libria in markets peopled by super-rational agents � in Herbert Simon�s apt
description: the Olympian Rational Agent � in an environment characterized
by varieties of mathematically manageable environments.

51The Art of Probability - For Scientists and Engineers by Richard Hamming,
Addison-Wesley Publishing Company, Inc. Redwood City, California, 1991.
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Pedagogically, then, one would begin by teaching �rst year students of the
social sciences the elementary principles of solving Diophantine equations, im-
mediately applying the concepts of solvability, by a digital computer, to an el-
ementary supply-demand equilibrium in some well de�ned market. From there
to the construction of �the arti�cial intellect of the machine�is only a small step
in this age and time.
But where does one�s visions, as an Algorithmic Social Scientist, proceed

�to which new frontiers? My immediate, perhaps somewhat unre�ective, an-
swer is unambiguous: towards an enrichment of the algorithmic mathematics of
Brouwer, Weyl, Bishop, Church, Turing and Post with the phenomenology of
Husserl. There, I believe, lies the fertile future symbiosis between epistemology
and methodology52 , for the enrichment of the algorithmic social sciences.
I cannot resist the temptation, therefore, of ending this paper with the pun-

gent suggestion Harold Edwards made, at his June 18, 2009 lecture at the Com-
putability in Europe conference53 :

"I often hear mention of what must be �thrown out�if one insists
that mathematics needs to be algorithmic. What if one is
throwing out error? Wouldn�t that be a good thing rather than the
bad thing the verb �to throw out�insinuates? I personally am not
prepared to argue that what is being thrown out is error, but I think
one can make a very good case that a good deal of confusion and
lack of clarity are being thrown out. .....
How can anyone who is experienced in serious computation con-

sider it important to conceive of the set of all real numbers as a
mathematical �object�that can in some way be �constructed�using
pure logic? .... Let us agree with Kronecker that it is best to express
our mathematics in a way that is as free as possible from philosoph-
ical concepts. We might in the end �nd ourselves agreeing with him
about set theory. It is unnecessary."
ibid, p. 14; bold emphases added.

What must be thrown out, if one insists that the social sciences need to be
algorithmic, is partially achieved when it is realized the set theory is unnecessary.
But there is a great deal of rubbish left, which needs to be thrown out, before
the social sciences become truly algorithmic.

52Note, please, that I do not refer to that other leg of this trilogy: philosophy - and I refrain
from doing so quite deliberately. See the closing paragraph of this paper.
53Kronecker�s Algorithmic Mathematics by Harold M. Edwards, The Mathematical In-

telligencer, Vol. 31, Number 2, Spring, pp.11-14, 2009.
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